Month: January 2017

3 Smart Applications for Process Visualization

Guest contributor: Shishir Rege, Balluff

Stack lights used in today’s industrial automation haven’t changed their form or purpose for ages: to visually show the state (not status) of the work-cell. Since the introduction of SmartLight, I have seen customers give new meaning to the term “process visualization”. Almost every month I hear about yet another innovative use of the SmartLight. I thought capturing a few of the use-cases of the SmartLight here may help others to enhance their processes – hopefully in most cost effective manner.

smartlightmodesThe SmartLight may appear just like another stack-light.  The neat thing about it is that it is an IO-Link device and uses simply 3-wire smart communication on the same prox cable that is used for sensors in the field. Being an IO-Link device it can be programmed through the PLC or the controller for change of operation modes on demand, or change of colors, intensity, and beeping sounds as needed. What that means is it can definitely be used as a stack light but has additional modes that can be applied for all sorts of different operation/ process visualization tasks.

Use Case #1: Stack Light Mode for Operation Status – The number of segments can be programmatically changed from 1 to the max segment number provided by the light (up to 5 in a five-segment SmartLight). Colors can be changed to red, blue, green, orange, yellow, white, or any other color of choice. This is the most traditional application of the SmartLight.

Use Case #2: Format Change Indicator – Many of our customers use the level mode to provide feedback to the operators when they are making adjustments to the machine. For example: red might indicate that the machine is out of alignment, yellow might mean the machine is getting closer to the specified alignment, and green might mean the machine is in the zone of alignment. Using the SmartLight in this fashion helped our customers save time in product changeovers because the operators didn’t have to come out of the cell to view the alignment status on a small HMI.  When the alignment of the machine is complete, the SmartLight can be programmed to switch back to the status indication mode or whatever mode of operation desired.

smartlightgifcroppedUse Case #3: Run Light Mode for Maintenance Indication – In this mode there are two colors – one color for the background and another color for the running segment. Along the assembly line where there are multiple work cells continuously processing raw materials in lock-step operation, downtimes are extremely costly. The standard status indicator will only indicate a problem at the work cell when the system stops, but it will not indicate a lack of raw material, for example. The moment the stack light turns red, the operator or the maintenance person is rushed to the site to first figure out what’s wrong before solving the problem. In Run Light mode, the SmartLight can be programmed to indicate different colors for the running segment and the background to show that attention is required at the cell. For example, as long as the running segment is running the machine is operational, but the background color can be changed to indicate raw material shortage, the need for mechanical adjustment of the machine, or the need for some electrical maintenance. Using a SmartLight, whoever is rushing the cell has a very good idea of what is required of them to get the system back up and running.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Industrial Enclosures Protect Components in Harsh Environments

Guest contributor: Steve Sullivan, Rittal Training Manager

Industrial enclosures face harsh conditions. From blazing to frigid temperatures, to dust, oil, dirt, airborne corrosives and liquids. Industrial engineers know that the manufacturing environment poses a multitude of challenges to the integrity of the control panel infrastructure.

 Environmental protection of the control panel infrastructure is never simple. Determining factors in the selection of an industrial enclosure can include the most extreme conditions. The key to selecting the superior enclosure is evaluating the harshest environment possible, and specifying an enclosure that can withstand any setting.

Foreign substances

Environment elements that can affect the performance of the control panel include the picture-2
penetration of foreign substances (water, dust, dirt, oils, etc.). The delicate electronic equipment housed inside the enclosure can fail with even minimal exposure to external substances.

The Rittal TS 8 combats the ingress of these substances with a four-point latching system and a foamed-in-place gasket system. This forms a continuous barrier around the enclosure skin ensuring a gap-free seal. This creates a superior seal and memory retention to block out the challenges of any environment.

Temperature

The control panel infrastructure faces temperature challenges on two fronts. First, internal temperature is affected by the heat generated from the operation of control panel devices. The external or ambient temperature also affects the enclosure and the operating control panels.

Fully compatible with the TS 8 is Rittal’s line of cooling solutions for both enclosure based and room based thermal management. With 30% to 50% of energy costs attributed to cooling systems, Rittal designs maximum cooling efficiency into each solution: CRAC, in line/in row, chillers, pipe installations, water distribution cabinets or water heat exchangers.

The delicate dew point balance between the load temperature and the ambient temperature is maintained, preventing damaging condensation of the control panels.

Washdown

When washdown of enclosures is required, the control panels must be protected. Exposed to harsh chemical cleansers, high pressure and/or heated water and frequent cleaning can break down some sealing systems. Rittal’s impervious seal guards the vital control panel components from the most stringent cleaning procedures.

Corrosive Elements

Whether an enclosure is in an indoor or outdoor environment, corrosion can be a factor in the breakdown of the enclosure’s durability. Outdoor factors such as sun, snow, salt or chemicals can damage the exterior of some enclosures. Acids, solvents, alkalis, oils and industrial chemicals can threaten an enclosure housed on the factory floor.

Rittal engineers designed a three-step painting process to combat any environmental abuse. Similar to the process used in the automotive industry, an electrophoretic dip-coat primer is applied, followed by a two-part primer nano-coat and final powder coat. This provides a finished external barrier on the TS 8 for any climate, interior or exterior.

Enclosure material construction

A variety of materials have been used for industrial enclosures. The stainless steel 316 construction of the Rittal TS 8 has been proven to be impervious to the most corrosive environments and superior to lesser steel or powder coated materials. Stainless steel 316, combined with the three-step finish has proven durability in the most extreme conditions.

The environmental protection offered by the Rittal TS 8 has been field tested in more than 10 million installations, in industries like oil and gas, mining, pulp and paper, food and beverage and life sciences. For more information on the TS 8 and all of Rittal’s flexible industrial solutions, download our Fact Book today to start your change for the better.

About Us

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Rittal distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

Reliable Part Exit/Part-Out Detection

Guest contributor: Dave Bird, Balluff

Walk into any die shop in the US and nine out of ten times, we discover diffuse reflective sensors being used to detect a large part or a small part exiting a die. Many people have success using this methodology, but lubrication-covered tumbling parts can create challenges for diffuse-reflective photoelectric sensing devices for many reasons:

  1. Tumbling parts with many “openings” on the part itself can cause a miss-detected component.
  2. Overly-reflective parts can false triggering of the output.
  3. Dark segments of the exiting part can cause light absorption. Remember, a diffuse sensors sensing distance is based on reflectivity. Black or dark targets tend to absorb light and not reflect light back to the receiver.
  4. Die lube/misting can often fog over a photoelectric lens requiring maintenance or machine down time.

The solution: Super Long Range Inductive Sensors placed under chutes

Most metal forming personnel are very familiar with smaller versions of inductive proximity sensors in tubular sizes ranging from 3mm through 30mm in diameter and with square or “block style” inductive types (flat packs, “pancake types”, etc.) but it is surprising how many people are just now discovering “Super Long Range Inductive Proximity” types. Super Long Range Inductive Proximity Sensors have been used in metal detection applications for many years including Body-In-White Automotive applications, various segments of steel processing and manufacturing, the canning industry, and conveyance.

Benefits of Using A UHMW Chute + Super Long Range Inductive Proximity Sensor in Part Exit/Part-Out Applications:

  1. It is stronger and quieter than parts flowing over a metal chute, readily available in standard and custom widths, lengths and thicknesses to fit the needs of large and small part stampers everywhere.
  2. UHMW is reported to be 3X stronger than carbon steel.
  3. UHMW is resistant to die lubes.
  4. UHMW allows Super Long Range Inductive Proximity Sensors to be placed underneath and to be “tuned” to fit the exact zone dimension required to detect any part exiting the die (fixed ranges and tunable with a potentiometer). The sensing device is also always out of harm’s way.
  5. Provides an option for part detection in exiting applications that eliminates potential problems experienced in certain metal forming applications where photoelectric sensing solutions aren’t performing optimally.

A Two-Out Die with Metallic Chute

Not every Part Exit/Part-Out application is the same and not every die, stamping application, vintage of equipment, budget for sensing programs are the same. Butit’s important to remember in the world of stamping, to try as consistently as possible to think application specificity when using sensors.  That is, putting the right sensing system in the right place to get the job done and to have as many technical options available as possible to solve application needs in your own “real world” metal forming operation.  We believe the UHMW + Super Long Range Inductive System is such an option.

You can learn more in the video below or by visiting www.balluff.us.

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.