IIoT

The 5 automation trends in the packaging industry

Guest contributor: Hans Michael Krause, Bosch Rexroth

Visual_EN_2538x1908_144-1250dpi.png

i4.0 in practice: the 5 automation trends in the packaging industry

Next-generation packaging machines are being designed without control cabinets and are increasingly vertically and horizontally connected. Big data analyses, smart maintenance and model-based engineering have unleashed tremendous potential. But even conventional automation tasks can be handled more easily with open interfaces and integrated functions. What are the five major automation trends in detail?

What the packaging lines of tomorrow will be able to do

When I look at the highly dynamic packaging industry, I see four major challenges faced by machine builders: more individuality when it comes to packaging, more flexibility in terms of formats, higher availability and less space required for machines and lines. These challenges lead to five major trends in automation:

(1) Connected – the connectivity trend

33640111-1200x800

As a user, I need transparency, whether I want to improve system availability through smart maintenance, make my line more flexible, or optimize complex packaging processes. Without knowledge of subprocesses and plant conditions, I can’t analyze anything – neither on premise nor via the cloud. Modern automation technology and sensor systems now provide all the necessary data. I have to retrofit existing systems, but preferably without the need for programming or intervention in the automation. The IoT gateway fulfills this requirement extremely elegantly and can be set up in just five minutes. Machine builders can also opt for Starter Kit, which includes the Software Production Performance Manager (PPM), for a complete analysis platform from a single source.

The sweet side of Industry 4.0

There is also enormous potential in cross-vendor and system-wide networking via IIoT protocols such as MQTT or the open i4.0 standard OPC UA. At interpack, four machine builders and Bosch Rexroth will showcase the “ChoConnect” project as an exciting example of authentic M2M communication: Four locally distributed exhibition machines from LÖSCH Verpackungstechnik, SOLLICH, THEEGARTEN-PACTEC and WINKLER and DÜNNEBIER Süsswaren exchange information as a virtual production line for chocolate products using OPC UA in accordance with the Weihenstephan standard and create an end-to-end transparent value chain at the shopfloor level – without the need for an MES or control system. The individual steps of mass processing, molding, primary and secondary packaging automatically adjust performance according to individual capacities. The production process becomes more flexible; system efficiency increases.

Merging of automation, IT and IIoT

The fact that inflexible line PLCs will soon be obsolete is also a consequence of a merging of automation, IT and IIoT. With open interfaces such as Open Core Interface, ERP systems can be directly linked to machine automation, simplifying inventory management for machine components. Obviously, there must be also be a security strategy for regulating access to the control system.

(2) Simple – Make it simple!

The current trend towards fewer personnel per line has increased the need for intuitive control units such as HMI with multi-touch. Transparent and seamless visualization solutions are required – on the production line itself and at other locations in the company – in order to continuously improve processes and respond quickly when necessary. The ActiveCockpit interactive communication platform shows that such solutions are already available today.

Companies often need the ability to easily integrate new machines or lines into existing systems – this can already be done mechanically using standardized chain conveyor systems such as VarioFlow plus in combination with the MTpro planning tool. In the future, open M2M interfaces will allow for easy electrical integration.

With the growing need to simplify diagnostics and maintenance, we will see even more web-based service tools and innovative LED concepts at machines in the future. Augmented and virtual reality are sure to play a part here, too. It has been repeatedly demonstrated at trade shows how the digital twin integrates itself into the real picture using open interfaces so that complex technical relationships can be visualized and understood more quickly. A product orientation module for beverage packages by WestRock will be showcased at interpack.

(3) Efficient – end-to-end digital engineering

Ever more complex design needs and shorter time-to-market requirements are fueling the demand for model-based engineering with simulations and virtual commissioning. As a technology partner with industry expertise, Open Core Engineering not only ensures seamless integration of the machine control with simulation platforms such as MATLAB/Simulink or 3DEXPERIENCE by Dassault Systèmes. For immediate creation of a digital twin that can be simultaneously used by mechanics, electricians and software programmers, Bosch Rexroth delivers digital behavior models of its automation products as standard.

Bosch Rexroth also provides a comprehensive library of prepared technology functions along with the machine control. By emphasizing parameterizing instead of programming, flow wrappers, secondary packaging systems, fillers or sealing machines can be commissioned more quickly. Integrated standard kinematics and functions for delta, parallel and palletizing robots are also available. Object-oriented PLC programming and high-level languages, such as Java and C++, facilitate creation of the machine control software. The controllers feature a web server for easy integration of Internet technologies such as visualization using HTML5. Of course, standardized programming templates support the creation of machine programs following OMAC/PackML standards as well as the Weihenstephan standard and PLCopen.

(4) Adaptive – the adaptivity trend

What if the packaging line automatically adjusted the product stream in the event of a fault, instead of jamming and displaying a lot of error messages? Prefabricated software functions such as intelligent infeeds or product grouping are already available, even for these trend-setting M2M scenarios. For the use of robots and flexible transport system a separate controller is not needed anymore. These are managed by the standard machine controller, and the number of interfaces and the effort required to use transport systems or robotics are reduced.

In view of increasingly complex packaging processes, there is also a need for machines to automatically adjust to their environment. Machines require Smart Sensor Nodes with MEM technology like XDK in order to “learn” from their current state. Virtual sensors like servo motors and drives, including the intelligent MS2N servo motor, provide useful information.

Last but not least, next-generation packaging machines automatically adjust to the current format and regulate process speed as well as product handling. Adaptive software functions have also been developed for this scenario of the future. The spectrum ranges from flexible electronic cams in the machine control (FlexProfile), drive functions such as auto-tuning and anti-vibration to frequency response measurements and innovative filter functions for minimizing resonance frequencies in mechanical parts.

(5) Cabinet-free – much more than just space saving

Cabinet-free-1250.jpg

This trend in packaging is not just about saving space in the automation technology, machine footprint and control cabinet space. Instead, it’s about a modular machine configuration that allows machine operators and customers to respond flexibly to different requirements. The individual modules are connected to one another only by a single hybrid cable and can be easily integrated into the machine or retrofitted later. This reduces the installation area and increases servo density in favor of greater flexibility. Installation space, cabling and maintenance costs are also reduced. Such modular approaches are especially useful for secondary packaging and rotary machines such as filling and capping machines as well as retrofit projects.

Solutions for these packaging trends are already available. Use them now!

Manufacturers and users of packaging machines already have numerous options for boosting their competitiveness through intelligent and connected automation solutions. But to achieve this, they need an industry-oriented, expert partner with a broad ecosystem of solutions. At interpack 2017, Bosch Rexroth will give visitors the opportunity to experience the trade show theme of “Connected Automation i4.0 now live in all of its facets – including modern networking, simple design, model-based engineering and groundbreaking service. The future of automation has already begun and is ready for “installation” in the latest generation of packaging machines. Now!

 

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

The Digital Improvement Process in Three Steps

Guest contributor: Marcel Koehler, Bosch Rexroth

Industry 4.0 solutions enable production employees to digitally replicate and implement a continuous improvement process, in order to increase output, improve product quality and reduce costs. But how do I implement a first use-case? How do I ensure the necessary plant transparency? And how do I configure the monitoring and evaluation system? Quite easily – in three steps, with easy to set up tools and tailored support by experienced experts.

20170419_graphic_ppm-process-improvment_en_web

The focus is on people.

There are fundamental principles that were in place long before digitalization. Robert Bosch once said: “People should always strive to improve the existing conditions. No one should merely be content with what they have achieved; instead they should always aspire to do what they do even better.” Today, as in the past, the path to continuous improvement of production processes starts with people. Improving quality, reducing costs or boosting output requires at least one person to design, monitor and readjust the continuous improvement process. This person defines the essential information, keeps track of it, evaluates it, intervenes when necessary and draws conclusions, in order to adapt the process. With the arrival of Industry 4.0 and the Internet of Things (IoT), however, we now have new tools at our disposal. Tools such as IoT Gateway, which collects a variety of data without interfering with the machine logic, as well as the analysis and evaluation solutions associated with it, including the Production Performance Manager, which visualizes and evaluates the data, initiates the required actions to be taken, and simplifies the review and adaptation of the improvement process.

 

Step 1: Workshop in the company

But how do I use these tools? And how do I implement a first exemplary use-case, in order to gradually introduce it? New knowledge is transferred particularly effectively from person to person, just as in Robert Bosch’s time. In line with this principle, an experienced expert comes to the company and demonstrates the typical procedure step by step as part of the Production Performance Starter Kit from Bosch Software Innovations. In the one-day workshop, he explains the digital tools as well as typical use-cases and views the production plant together with the customer. The result of the joint workshop is at least one concrete use-case, including the solution design. The desired benefits will be examined once again and potential hurdles identified. According to the same formula, the customer can later find, develop and implement additional use-cases.

infografik_ENG_16_9_img_w1184_h666The IoT Gateway collects data from various data sources and natively transfers it to the analysis and evaluation software (Production Performance Manager).

Example of a first production performance use-case

A practical example from a concrete workshop: the condition-based monitoring and maintenance of a heat exchanger. If the heat exchanger becomes clogged due to deposits, approximately 1,500 parts become defective and the plant is forced to shut down for two hours for maintenance. An early warning system should be installed, in order to prevent production rejects and unplanned downtimes. A direct measurement of the flow rate in this plant is not possible, however, which is why temperature sensors are installed before and after the heat exchanger. The IoT Gateway, which is also installed in the line, collects the sensor data and transmits it to the Production Performance Manager, where the temperature difference is determined and compared with threshold values in order to indicate contamination. All measured values are visualized centrally for the employees responsible. When the pipes begin to clog, the system transmits a warning signal or assigns a maintenance ticket to the appropriate qualified personnel.

Step 2: Implement yourself with remote support

In the second step of the Production Performance Starter Kit, a senior consultant from Bosch Software Innovations installs the Production Performance Manager via remote access to the customer’s hardware. In doing so, at least one machine is integrated as a prototype, in order to prepare the user for scaling the solution later on. The demo license is valid for three months and up to ten machines are supported. In addition, four days of remote support are included for the Production Performance Manager. Depending on the technical infrastructure, the shopfloor integration can be done in one of three ways: via individual integrators to be programmed, via PPMP-compatible controllers or system-independent integration via the IoT Gateway from Bosch Rexroth, a universal connector that communicates natively in the open source protocol PPMP in addition to other protocols. Via the web-based user interface, the user manages the sensors, defines preprocessing of the collected data if necessary, and configures forwarding to the target system, in this case to the Production Performance Manager.

Industry 4.0 Showcase with IoT Gateway and Production Performance Manager.

Step 3: On-site user training

After configuring the infrastructure, one last step remains, in which the employees learn to successfully apply the software. This takes place as part of a detailed user training course with an experienced trainer who comes to the location for one day. After this training, participants are able to gain quick access to machine data via visualization, set up simple automated analyses and evaluations, and define intelligent, data-driven actions based on the results. Following the idea of continuous improvement, they are, as the key stakeholders of their digital improvement process, also qualified to review the actions for effectiveness and efficiency. Thanks to the transparency this provides, the user now has a valuable Industry 4.0 tool for their daily work.

elemente_eng_16_9_img_w1184_h666.jpgElements of the joint starter kit from Bosch Software Innovations and Bosch Rexroth

Gradual scaling after only three months

Photo_PI_014_17_IoT_Gateway_HM-1200x844

After only three months, employees arrive at the decisive point, from which they scale the prepared solution and repetitively connect additional machines and entire lines. As costs steadily decrease, the benefit increases disproportionately in the long run as the transparency gained gradually extends across all bottlenecks. In this manner, the production management of Bosch’s Pecinci plant (Serbia) succeeded in sustainably improving the stability of a complex coating process for wiper arms. The IoT Gateway collects sensor and controller data, such as humidity or paint consumption, and forwards the data to the Production Performance Manager. The software analyzes this data and compares it with defined threshold values, in order to optimize the plant availability of the coating plant, which consists of ten individual stations. A track & trace function, which allows conclusions to be drawn from the finished product about quality-relevant sub-processes, is planned as a follow-up project to the continuous improvement of product quality.

Do not be afraid of software! Try it out now and get started.

With the Production Performance Starter Kit, the hurdles to implementing digital processes for continuous improvement are greatly reduced. Any fears associated with the digital toolkit are completely unfounded. The IoT Gateway and the Production Performance Manager do not require any programming knowledge for daily application. Together with the methodical knowledge and practical support of our experts, companies acquire the knowledge necessary to implement their first use-case, scale the solution and tackle additional improvement projects in only three months. Robert Bosch surely would have relished the idea!

Learn more about the Production Performance Starter Kit in the webcast.

cropped-cmafh-logo-with-tagline-caps.pngCMA/Flodyne/Hydradyne is an authorized Bosch Rexroth distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

5 Common IIoT Mistakes and How to Avoid Them

Guest contributor: Pat Millott, Balluff

IIoT is the perfect solution for all your data accessibility needs, right? If you check out my previous blogs, I discussed the many benefits of using the Industrial Internet of Things (IIoT) to remotely access data. However, if not used properly, IIoT can get you into some trouble. Let’s review 5 common mistakes to avoid when building your IIoT application.

1. Excluding your IT department
It’s crucial to make sure your Information Technology group is involved in this project. IIoT applications can be very taxing on your network. It’s easy to forget some key aspects like bandwidth and network traffic when developing your application. But when your application is finished, your IT department is going to want to know what network resources that are being used. Some questions they might ask include:

  • How many potential clients will the server have at any given time?
  • What is the max refresh rate of your application?
  • How frequent do you query the SQL server?
  • How are your queries structured?
  • What might be some vulnerabilities on this application?
  • What measures are you taking to protect these vulnerabilities?

It’s going to be a lot easier if they are included right away so everyone has a good understanding of what resources are available and how to protect them.

2. Excluding OT and Controls Engineers
Similar to the IT department, it’s important to include the controls engineer especially if you plan on hosting data from a PLC. The controls engineer is going to want to determine what data is publicly available and what data should be kept private. Some questions the controls engineer(s) might ask include:

  • What is your application trying to show?
  • What PLC data do you want to use for this?
  • Is your application going to write data to the PLC?
  • Do any modifications need to be made to the PLC code?

Keep in mind that any modifications that need to be made to the PLC will probably have to go through the controls engineer. This is to ensure that no code changes on the PLC will impact the efficiency and safety of production.

3. Running out of date software
Software that you write and the software that your application relies on should always be up to date. In other words, if you use a module or library in your code, it’s important to make sure you have the most up to date version. Also, it’s important to keep updating your application for additional security and functionality. Out of date software can lead to potential application crashes or even vulnerabilities for cyber attacks. Keep in mind, an application that runs on out of date software makes the server host vulnerable as well as its clients.

IIoT_Pyramid4. Unorganized data flow
Data flow is an important concept to consider early on in the development of your application. Say you have a server forwarding PLC data to a SQL database that is then utilized in a web application. The web application acts as a historian and analyzes data change over time. Is it better to calculate the data in the back-end application, the SQL database, the server forwarding the data or the PLC? The answer depends on the situation but typically, it’s best to keep the data calculations as close to the source as possible. For example, say your back-end application calculates percentages based on yesterday’s production compared to today’s. In this situation, if the back-end application crashes, you lose historian calculations. Typically, a SQL database is much more reliable as far as downtime and crashes and it will run whether your back-end application is functional or not. Therefore, it would be better to do these calculations in the SQL database rather than the back-end script. Continuing this concept, what if the PLC could do this calculation? Now the forwarding server, the SQL database, and the back-end script can all crash and you would still have your historian data for when they go back up. For this reason, the closer to the source of data you get, the more reliable your calculations based on that data will be.

5. Unprotected sensitive data
Possibly one of the most important things to remember when developing your application. Even simple applications that just display PLC data can give a hacker enough for an attack. Think about this IoT scenario: Say I have a server that hosts data from my personal home such as whether or not my front door is locked. This information is important to me if I want to check if someone forgot to lock the front door. But to a burglar, this data is just as useful if not more as he/she can now check the status of my door without having to leave their car. If I don’t protect this data, I am openly advertising to the world when my front door is unlocked. This is why encryption is crucial for sensitive data. This is also why it’s important to discuss you project with the controls engineer. Data that seems harmless might actually be detrimental to host publicly.

Data accessibility is evolving from a convenience to a necessity. Everyone’s in a hurry to get their data into the cloud but keeping these ideas in mind early on in the application development process will save everyone a headache later on. That way, IIoT really can be the perfect solution for all you data accessibility needs.

To learn more about IIoT visit www.balluff.us.

About Us

cropped-cmafh-logo-with-tagline-caps.png

CMA/Flodyne/Hydradyne is an authorized  Balluff distributor in Illinois, Wisconsin, Iowa and Northern Indiana.

In addition to distribution, we design and fabricate complete engineered systems, including hydraulic power units, electrical control panels, pneumatic panels & aluminum framing. Our advanced components and system solutions are found in a wide variety of industrial applications such as wind energy, solar energy, process control and more.

How do I see PLC data from my smartphone?

Guest contributor, Pat Millot, Balluff

From my smartphone, I can do anything from making coffee to adjusting my home thermostat. This wave of appliances and other physical devices connecting and communicating through a network is known as the Internet of Things and it’s playing a crucial role in industry. With the Industrial Internet of Things (IIoT) we can now monitor PLC data without ever intruding on the PLC. Let’s take a look at how I implemented PLC tags on a web application.

IIoT_computer The first step is to download OPC UA historian software. OPC UA stands for Open Platform Communications Unified Architecture. OPC is a client/server communication standard that was made as a gateway between the PLC and a Windows PC. The UA was added as an upgrade that allowed communication across other operating systems such as Linux and iOS along with other added functionality improvements. Once this software is running and the PLC and PC are communicating, we can work on hosting that data.

IIoT_StructureHosting the controller data can seem like a daunting task at first due to the many different options in software and programming languages to use. For example: Ruby, PHP, ASP, ASP.NET and much more are available for back-end development. For my web app, I used SQL to host the data from the OPC UA software. As for the back-end, I went with node.js because it has great packages for working with SQL; in addition to the fact that node.js uses JavaScript syntax which I’m familiar with. The front end of the app was written with HTML and CSS with JavaScript for interactivity. With all these elements in place, I was ready to host the server on the PC to host PLC data.

With smart IO-Link sensors on our conveyor I was able to look at diagnostic and functional data in the PLC and setup an interactive screen at the conveyor for viewing production and maintenance information.

And now I can even check my sensor outputs with the same smartphone that just made my coffee and adjusted my office’s temperature.

IIoT_warehouse

You can learn more about the Industrial Internet of Things at www.balluff.us.

Shop Balluff products online at www.cmafh.com